


DATA SHEET

At Hybrid Sources, our **thick film experts** provide reliable, high-quality solutions for custom thick film substrate manufacturing. We use the best available technology for **precision screen printing** of conductive, resistive, and insulating pastes resulting in a cost-effective circuit that meets your requirements and specifications.

Standard substrates include **Alumina**, **Beryllium Oxide**, **Aluminum Nitride**, and exotic materials screen printed with various conductive, resistive, and insulating pastes to fabricate single, double-sided, and multilayer circuits. All shapes are possible with intricate patterns cut by laser. Sizes range from 10 mils square to 12 square inches (305mm) while substrate thickness ranges from 5-100 mils (0.005" - 0.100") with 25 mils typical.

Founded in 1985, the company adheres to applicable AS and MIL specs and takes pride in our outstanding on-time delivery record with products Made in the USA.

Substrates

Material	Descriptions
Alumina (Al ₂ O ₃)	90%, 96%, 99.6%, As fired, Lapped, Polished
Aluminum Nitride (AIN)	Lapped
Beryllium Oxide (BeO)	As fired, Lapped
Exotic Materials	Ferrite, Quartz, Pink Diamonite, Lithium Niobate, Sapphire

Properties of Common Substrates (tested at 15GHz)

Properties	Units	Alumina 96%	AIN	BeO
Dielectric Constant (1MHz @ RT)		9.8	8.9	6.7
Dielectric loss (1MHz @ RT)		0.0001	0.0005	0.004
Electrical Resistivity	Ohm-cm	>10 ¹⁴	>10 ¹⁴	>10 ¹⁴
Thermal conductivity @ T=.040 in.	W/m K	36	170 – 190	260
Coefficient of Thermal Expansion	ppm/°C	8.2	4.6	8.5
Density	g/cm ³	2.89	3.3	3.85
Bending Strength	mPa	380	290	230
Hardness (knoop)	GPa	14.1	11.8	9.8
Youngs Modulus	GPa	372	331	345

Nominal substrate thickness: 10, 15, 20, 25, 40, 60 mils ±10% as-fired. Other thicknesses and tolerances achieved by lapping or pre-sorting.

Intricate patterns

u Company

Size: 10 mil² to 12" dia.

Assembly

Hermetically-sealed

Thick Film Design Guidelines

Conductor	Symbol	mΩ / □ resistivity	Notes	
Gold	Au	4	Wire bondable and low resistance runs	
Platinum Gold	PtAu	40	Wire bondable, Solderable (no migration)	
Silver Palladium	AgPd	25	Wire bondable, Solderable (good aged adhesion)	
Silver	Ag	3	Aluminum wire bondable; prone to oxidation	

Other conductors available: Platinum (Pt), Palladium Gold (PdAu), Platinum Palladium Gold (PtPdAu), Platinum Silver (PtAg), Platinum Palladium Silver (PtPdAg).

Conductor Design Guidelines	Notes	
Line & Space Width	5 mils (0.005") minimum	
Thickness per layer, up to 8 layers	8-12 microns (gold 6-9 microns) typical	
Offset / Pull back from diced edge	1-5 mils (0.001" to 0.005") ±2 mils	
Offset / Pull back from scribed edge	5 mils (0.005") typical	
Offset / Pull back from Dielectric	3-5 mils (0.003" to 0.005") typical	
Alignment	5 mils (0.005") front to back	

Resistors	TCR ppm/°C	Tolerance (no load)	Power dissipation mWatts/mm²
<20 ohms	±100	0.50%	900
20Ω-100k ohms	±50	0.25%	120-600
100k-10M ohms	±100	0.50%	120 max.

Laser trimming, solder dipping, 1000 hour load life, stability >0.3% total

Dielectric:

- · Low K dielectric allows up to 12 conductor layers
- High K dielectric allows capacitor formation (0.1 μF/in² max.)

Thick Film Design Guidelines

Resistors	Description
Line & Space Width	5-10 mils (0.005" to 0.010") minimum
Minimum Value	0.1Ω
Maximum Value	10M Ω typical max., tolerance of ±20%. Can print to 2G Ω .
Minimum chip size	10 mils square (0.010")
Minimum Overlap	3 mils (0.003")

Vias (Plated or Solid-filled)	Description	
Diameter	10 mils (0.010") typical. 5 mil min., 20 mil max.	
Minimum metal overlap of pads	10 mils (0.010")	

Processing & Assembly

Processing & Assembly	Description	
Laser Scribing	Single/Array	
Laser Drilling	Vias/Holes	
Laser Machining	Per requirement	
Diamond Saw Cut	±2 mils (0.002")	
Hermetically-sealed	Per requirement	

Wire Bonding	Description	
Gold Ball	1 to 10 mil wire	
Gold Wedge	½ to 3 mil wire	
Aluminum Wedge	1 to 3 mil wire	
Ribbon Bonding	1 to 10 mil wire	

Standards and Qualifications

AS & Military Standards	Description
AS-9100, Rev. D	Quality Management Systems
AS-9003, Rev. A	Inspection and Test Quality Systems
MIL-STD-883	Tests and procedures, microelectronics, High Reliability applications
MIL-I-45208	Quality
MIL-M-38510	General microcircuits
MIL-C-45662	Calibration
MIL-Q-9858	Quality Program
Hi Reliability (additional MIL- STD-883 screening)	Stabilization bake, Temperature cycling, Thermal shock, Constant acceleration, Fine and gross leak, Final electrical testing

Qualifications	Description
RoHS	EU Directive 2015/863 RoHS 3 Annex III 7c-I and 34 Category 9
REACH	Regulation (EC) No 1907/2006 of EU Parliament and Council
Conflict Minerals	Dodd-Frank Wall Street Reform & Consumer Protection Act of 2010
NIST SP 800-171	Certified to Cybersecurity standard for suppliers to the DoD
CMMC 2.0	Compliant with Level 2 Cybersecurity Maturity Model Certification
CAGE Code	07CB1
Made in USA	Manufactured and sourced in USA, unless specified by customer
Lockheed Martin	Sole-source qualified supplier for thick film

Thermal Conductivity Chart

Material	Chemical	Watts cm • °C
Metals:		
Silver	Ag	4.08
Copper	Cu	3.94
Gold	Au	2.96
Aluminum	Al	2.18
Beryllium	Be	2.00
Tungsten	W	1.74
Rhodium	Rh	1.50
Molybdenum	Мо	1.46
Brass	66%Cu, 34% Zn	1.11
Chromium	Cr	0.937
Nickel	Ni	0.920
Platinum	Pt	0.716
Tin	Sn	0.666
Tantalum	Та	0.575
Lead	Pb	0.353
Titanium	Ti	0.219
PC Boards:		
RT/Duroid® 5880		0.026
G10/FR4®		0.027
RT/Duroid® 60 (XX)		0.0041- .0048
TMM® (X)		0.0068- .0075

Material	Chemical	Watts cm • °C
Insulators:		
Diamond	CVD	10 – 16
Beryllium Oxide 99.5%	BeO	2.61
Aluminum Nitride	AIN	1.70
Sapphire		0.46
Alumina Oxide 99.6%	Al ₂ O ₃	0.36
Alumina Oxide 96%	Al ₂ O ₃	0.26
Alumina Oxide 91%	Al ₂ O ₃	0.13
Glass		0.015
Mica		0.043- 0.0062
Air		0.00026
Bonding:		
Gold Germanium 88/12		0.8834
Gold Tin 80/20		0.6824
Tin Lead Solder	Sn62	0.4921
Indium 100%		0.2386
Silver Filled Epoxy		0.0156
Ероху		0.0099

Common Products

Product	Description	Example	Specifications
Custom	Single- or multi-layer custom designs built economically up to 8 layers.		Designed to customer requirements
Antennas	Converts voltage from transmitter to radio signal or captures signal for a receiver.		Built to spec for Frequency, Power, Gain, Return Loss and VSWR.
Attenuators	Reduces signal power without distorting waveform; opposite of amplifier.		Frequency: DC-6 GHz Power: 10-100 Watts Attenuation: 1-20 dB Size: 10 x 20 mils to 0.375" sq.
Bonding pads	SMT pad used to connect output pins of an IC or device on a PC board.		Bondable with Gold or Aluminum wire. Solderable for lead-free or leaded solder materials.
Chip Resistors	Passive 2 terminal device that resists flow of current. Available in Tab & Cover, Flange.		Value: 100mΩ to 10MΩ Power: 30-800W Freq: DC-6GHz Size: 0402 (20x40 mils) to 1" sq
Crossovers	SMT bridge replaces the need for a multilayer board or a coaxial jumper.		Jumper: RF to DC -or- RF to AC Impedance: 50Ω Freq: DC-4GHz, Isolation: 20dB Power Max: 30W
Heat Sinks	Passive heat exchanger dissipates heat from a device attached to PC board.		Thermal conductivity: 30 to 330 W/mK on ALN, Alumina, or BeO
Heaters	Heating element assures uniform and directional heat for accurate readings.		Printed on ceramic substrates in custom shapes and sizes.

Product	Description	Picture	Specifications
Sensors	Hall Effect Sensor: detects presence & magnitude of magnetic field. Oxygen Sensor: measures proportion of oxygen (O ₂) in gas or liquid. pH Sensor: measures alkalinity & acidity in water liquid. Pressure Sensor: measures strain or pressure. Proximity Sensor: detects presence of objects as near as 5 mils without physical contact. Temperature Sensor: measures temperature using thermistors.		Specifications: Built to customer specifications. Substrates: Generally Alumina; all ceramic substrates available. Operating Range: Broad temperature range, typically -55°C to 150 or 200°C. Sensing Distance: Min. 5 mils to detect RPMs by measuring dot on rotating shaft. Output: Voltage or current if needed.
Static Transfer Plate	Moves Semiconductor wafers with static electricity		Peak Voltage: 3,000V
Terminations	Resistor grounded at end of transmission line prevents reflected signal from causing distortion.		Power: 30-800W Freq: DC-8.5GHz Size: 0402 (20x40 mils) to 1" sq Mounting: Chip, Tab & Cover, Flange mount.
Thermistors	Thermal Resistor is a component with resistance dependent on temperature.		Type: NTC or PTC Size: 0402 (20x40 mils) to 1" sq Op. Temperature: -40 to 125°C

Industries & Applications

Industries

- Aerospace
- Analytical Instruments
- Automotive
- · Automatic Testing Equipment
- · Commercial Airlines
- Consumer
- Defense
- Health and Beauty Appliances
- High Technology
- · Industrial Packaging Equipment
- Medical Diagnostics
- Medical Devices
- Military Aircraft
- Molecular Technology
- Oil & Gas
- Pharmaceutical
- RF and Microwave products
- Satellite and space exploration
- Semiconductor Fabrication
- Sensors
- Submarines
- Telecom
- Test & Measurement
- University & Research Institutions

Applications

- Aegis Radar Electronics
- Attenuators
- Automatic Test Stations
- CERN Large Hadron Collider
- Airbus A320, A350, Boeing 737, 787
- Crossovers, Jumpers
- Diagnostic Analyzers
- · Heat Sinks for PC boards
- Mars Rovers
- Microwave Subsystems (Antennas, Filters, Isolators, Oscillators, Power Amplifiers, Radar, RC Networks)
- F-35 JSF, F-16 Fighting Falcon, F-15 Eagle, F-14 Tomcat
- Molecular blood testing
- Plasma Cleaners
- Resistors
- Semiconductor fabrication equipment
- Sensors (Hall Effect, Oxygen, Pressure, Proximity, pH, Temperature)
- · Virginia-class, Seawolf-class subs
- Terminations
- Thermistors

2950 43rd Avenue Vero Beach, FL 32960 **United States** Direct: +1 (772) 563-9100 Email: ThickFilm@HybridSources.com Website: www.HybridSources.com